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Part 1 - Global and local balances in
insurance pricing
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Setting

Y = aggregate claim amount or its frequency component.
e X = (Xq,Xo,...,Xp,) = risk or rating factors.

e Pure premium= amount collected by the insurer to
compensate for the claims, without loss nor profit.

m(X) candidate pure premium.

w(X) = E[Y]|X] true pure premium.
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Global balance

Global balance is the very basic requirement for a pure
premium in insurance.

Formally, it requires that

E[Y] = E[x(X)].

In practice, this means that

n

1 1
nZIY,-z ;ZTI’(X,’) for large n
1=

i=1

In words, global balance for 7(-) ensures that

aggregate loss = total pure premium income, for large n.
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Method of marginal totals (MMT)

e Early 1960s in North America, still reflects actuarial thinking.
e With x;; € {0,1} for all j, the pure premium is written as

P
m(xi) = €0 vai’j
j=1

where
e; = risk exposure for policy /
7% = base premium 7(0) per unit of exposure
7j = relativity associated with risk factor ;.

e Considering x;, = x;, except for x; ; =1, x;, j = 0,
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Method of marginal totals (MMT)

e MMT imposes
- global balance

Z%—Z (x/)

i=1

- and local balance over all contracts with x;; = 1

Z Yi = Z 7T(Xi) forj=1,2,...,p

ilx; j=1 i|x; j=1

e Referring to contingency tables, this type of local balance is
called marginal balance.

e Base premium 7 and relativities 7; solve the system of
balance equations.
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From MMT to GLMs

e Assume that given X, the response Y obeys a distribution
from the ED family: Binomial, Poisson, Gamma, Tweedie,
etc.

e The pure premium rate for policy i is of the form
P
gt Bo+ D Bixi
j=1

where g is the link function.

e With canonical link function
Minimizing deviance < Solving MMT equations.

= GLM estimation with canonical link is equivalent to the
actuarial MMT which predates GLMs.

= MMT can be implemented with any tool developed for GLMs.
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From MMT to GLMs
e If x;j € {0,1} for all j and g = log then

p
7T(X,') = exp Ine; + BO + Z’Bjxi’j = € exp(ﬂo) H exp(ﬁj)

j=1 Jlxij=1
where
exp(Bp) = base premium per unit of exposure for the reference
class, for which xj1 = xj2 = ... =Xx;, =0
= "0
exp(Bj) = relativity of risk factor j, i.e. effect of switching
from x;; =0to x;; =1
=
e We then recover the multiplicative structure of the
premium.
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Modern learning tools

Linear score 5y + ZJ‘.’ZI ix;j in GLMs replaced with much
more flexible ones.

Premiums still determined by minimizing deviance.

However, deviance now
- penalizes departures of 7(x;) from y;
- maximizes correlation between 7(x;) and y;

measured on different scales.

Documented in Denuit, Sznajder and Trufin (2019), Denuit,
Charpentier and Trufin (2021).

Balance is no more imposed and optimizing deviance may
favor correlation.

Lack of balance is not problematic in many applications (like
credit scoring or fraud detection) but well in pure premium
calculation.
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Local balance by autocalibration

e Autocalibration by Kriiger and Ziegel (2021) imposes
E[Y!ﬂ(X) =s| =sforalls.

» Balance thus operates within each group of contracts charged
the same premium, preventing any transfer.

e Example: two values for w(X): 71 and mp. Then, 7(X)
autocalibrated means that

L Z Y;=m and nl2 Z Y; = m.

n . .
iim(Xi)=m imw(Xi)=m2

where nj =37 I[n(X;) =7, j=1,2.
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Part 2 - Testing for local balances using the
concept of auto-calibration
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Lorenz and concentration curves

e The Lorenz curve associated to the predictor 7 is defined by

E[ZOOIF(X) < Fz Y (a)]]

EF(X)] , a€(0,1).

LC[7(X); a] =

e The concentration curve of the response Y with respect to
the predictor 7 is defined as

E[YI[7(X) < F-Y(a)]]

E[Y] , a€(0,1).

CClY, 7 (X);a] =
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Lorenz and concentration curves
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A new characterization of auto-calibration

e Proposition: (Denuit et al., 2024) We have
CCO[u(X),7(X); a] = LC[m(X); ] for all a € (0,1)

if, and only if Tynbiased(X) = E[A[(Y 7(X) is auto-calibrated.
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Statistical test for auto-calibration

e Denuit et al. (2024) introduced a statistical test for
auto-calibration.

e The authors test the null hypothesis
Ho : CClu(X), 7(X); o] = LC[7(X); o] for all a € (0,1)
against the alternative

Hi : CC[u(X),7(X); o] # LC[7(X); a] for some a € (0,1).
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Statistical test

> Testing procedure: based on the difference between sample
versions

CClu(X), 7(X); 0] = % DV ERX) < FH(@)] L ae(0.1),

and
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Statistical test

» The null hypothesis is rejected for large values of the test

statistic

T = SUPxe(0,1) ’ Tn(a)’7
where
To(@) = Vi (CCu(X),7(X);a] — LC[F(X); a])

e (Y TN (a1
_ nl/Z;(? - )l[Tl’(X,)SF% ()], «€(0,1).
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Statistical test

~

» Proposition: Assume that (Y;, (X)), i=1,2,...,n, are
such that E[Y;] # 0, E[7(X)] # 0, E[7?(X;)] < oo and
E[Y?] < co. Then, under the null hypothesis, T,(c)
converges weakly to a Gaussian process.
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Statistical test

> The proposed test rejects the null hypothesis when
T = supae(o,1)| Tn(a)| > 5,

for some critical value cg such that
Plsupae(o,1) Tn(a) > ¢5] = 5.

» However, the analyst cannot compute the critical value cg
since the underlying distribution of (Y;, 7(X;)) is unknown.
Given the asymptotic Gaussian behavior of the process, the
non-parametric Monte-Carlo methods of Zhu et al. (2016)
can be used.

20/43



Case study - Data set

» Swiss motor insurance database with 500 000 insurance
policies used in Wiithrich and Buser (2016) and in Wiithrich
(2020).

» For each policy i :

» Numbers of claims Y;;
> Exposure-to-risk e; < 1 (i.e. the duration of observation
expressed in years)
> Features X; = (X,'l, . ,X,'g) :
- Xi1 = the age of the driver (age);
- Xj2 = the age of the car (ac);
- Xiz = the power of the car (power);
- Xis = the fuel type of the car (fuel);
- Xjs = the vehicle brand (vehicle brand);
- Xie = the area code of the living place of the driver (area);
- Xi7 = the population density at the living place of the driver
(dens);
- Xjs = the Swiss canton of the license plate of the car (ct).
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Case study - Data set

» Important: The values e;u(X;) of the true model are also
provided (the Y; have been generated from expected true
model frequencies e;u(X})).

» We partition the data set into a training set D (80%) and a
validation set D (20%).
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Case study - Data set

» Estimates of the CC (in red) and LC (in blue) on D for the
true model:
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» Applying our testing procedure to the true model on D, we
get Dequal = 0.29, meaning that the null hypothesis is not

rejected at the level 5%.
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Case study - Models under consideration

» Given X = x and the exposure-to-risk e, Y is assumed to be
Poisson with mean ey(x).

» D is divided into D; and D5, where D; includes 80% of the
observations of D and D, gathers the remaining 20%.

> We first fit two GAMs on D; using the R package mgcv:

> 7CAMI(x) with only the feature X; (age);
> 7CAM2(x) using all 8 available features.

The covariates age, ac, power and dens are captured by
splines and we do not consider interaction terms.
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Case study - Models under consideration

> We fit four GBTs on D; producing the following estimators:
> 76BT1(x), with only the feature X; (age);
> 76BT2(x) using all 8 available features and ID = 1;
> 76BT3(x), using all 8 available features and ID = 2;
> 76BT4(x), using all 8 available features and ID = 3.

The optimal values for the number of trees T are
determined by minimizing the out-of-sample Poisson deviance
loss computed on Ds:

» T =507 for 7°BTL,

> T =2977 for 76BT2;
> T =2084 for 76BT3;
> T = 2943 for 7°BT4,
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Case study - Testing for equality of Concentration and
Lorenz curves

» Estimates of the CC (in red) and LC (in blue) on D:
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Case study - Testing for equality of Concentration and

Lorenz curves

» Values of pequal:

™ ﬁequal
7CAMI 1°0.000
7GAM2 | 0 744
7CBTL 1 0.000
7GBT2 | 0.000
7GBTS | 0.000
7GBT4 | 0.000
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Part 3 - Balance correction as a means for
auto-calibration
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Balance correction as a way to restore financial equilibrium

e Start from any predictor 7(X) strongly correlated with the
response Y.

= The ranks produced by 7(-) are informative to order
contracts from the cheapest to the most expensive one.

e An accurate premium can then be obtained by averaging
claim amounts over neighborhoods induced by =(-).

e The balance-corrected premium 7,.(X) obtained from
m(X) by
The(X) = E[Y|7(X)]

satisfies autocalibration.
e In practice, balance correction can be implemented by

- local regression (Denuit, Charpentier and Trufin, 2021,
Ciatto et al. 2023);

- isotonic regression (Wiithrich and Ziegel, 2023).
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Balance correction: Example (Ciatto et al. (2023)

e freMTPL2freq data set (in the CASdatasets package in R).

e 678 013 observations of the number of claims (response Y') in
a French MTPL portfolio, with 9 features X = (Xi,..., Xo).

e 7: boosted Poisson model (training set = 60% of the data).

e Thc: obtained by local regressions (on 20% of the data=
validation set).

e Lift chart (on the test set = 20% of the data) :

- - predicted < - * predicted BC
© actual © actual
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Impact of balance correction on Bregman divergence

e For a convex function ¢(+), define the error measure for the
mean as

Ly, m) = {(y) — £(m) = £'(m)(y — m).

Functions L(-,-) are called Bregman loss functions.

e Bregman loss functions are important in insurance
ratemaking since any Bregman loss function is a strictly
consistent loss function for the mean functional.

e Then,

E[L(Y,Tbe(X))] < E[L(Y,7(X))].
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Impact of balance correction on concentration curves

e Proposition: (Denuit and Trufin, 2024)
We have

CCY, Fue(X); 0] < CC[Y, 7(X); a]

for any probability level a.
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Impact of balance correction on Lorenz curves

e Proposition: (Denuit and Trufin, 2024)
Let t — m(t) = E[Y|7(X) = t]. Assume that m(-) is
continuous and strictly increasing. Then,

t— mgt) non-decreasing = LC[,¢(X); a] < LC[7(X); o]

t— mit) non-increasing = LC[T,c(X); o] > LC[7(X); a].
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Part 4 - Performance criteria for
auto-calibrated predictors
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Context

» There are many tools for model selection in machine
learning : deviance criteria, Gini index, concentration and
Lorenz curves, correlation coefficients, ...

» Interesting facts:

» Deviance is a consistent scoring rule for the mean;
> Not the case in general for the other measures listed
before.
= Working with these tools for model selection may thus
lead to a wrong model choice.

» Restricting the Gini index to the class of autocalibrated
regression models makes it a consistent scoring rule
(Wiithrich, 2023).
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Pearson’s linear correlation

> Correlation coefficients are often used to assess the strength
of dependence within the pair (Y, 7(X)).

> The most elementary correlation coefficient is Pearson's linear
one:

Y, m(X
(¥ 7(x)) = oAl T
v/ Var[Y]Var[7(X)]

» Proposition 4.1: (Denuit and Trufin, 2023)

Let 7(X) be an autocalibrated predictor. Then, r(Y,7(X)) is
maximum if, and only if, 7(X) = u(X).
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Gini index and ICC

» The integral of the concentration curve (ICC) over the
whole interval [0, 1] is then given by

[y, #(X)] = /0 " CCLY. 7(X); alda

E[Y [y IF(X) < F=Y(a)]da]
E[Y] '

» The Gini index can be defined as

3 — ICC[Y, 7 (X)]

Gini[Y,m(X)] = .
Y, 7(X)] 3- fol CClY,Y; a]da
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Gini index and ICC

> The Gini index is not in general a consistent scoring rule
for the mean, so neither is the ICC (Withrich, 2023).

» BUT the Gini index gives a consistent scoring rule within
the class of autocalibrated regression functions
(Wiithrich, 2023).
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Concentration curve

» Proposition 4.3: (Denuit and Trufin, 2023)
For any autocalibrated predictor 7w(X), we have

CClY,m(X);a] > CC[Y,u(X);a] forany a € (0,1),

with an identity if, and only if, T(X) = u(X).
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Lorenz curve

» Since the LC coincides with the CC for autocalibrated
predictors, Proposition 4.3 shows that the true model also
has the smallest Lorenz curve.

» This legitimates model assessment based on Lorenz curve
under autocalibration, as it is often performed in practice!
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