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Part 1 - Global and local balances in

insurance pricing
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Setting

• Y = aggregate claim amount or its frequency component.

• X = (X1,X2, . . . ,Xp) = risk or rating factors.

• Pure premium= amount collected by the insurer to
compensate for the claims, without loss nor profit.

• π(X ) candidate pure premium.

• µ(X ) = E[Y |X ] true pure premium.
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Global balance

• Global balance is the very basic requirement for a pure
premium in insurance.

• Formally, it requires that

E[Y ] = E[π(X )].

• In practice, this means that

1

n

n∑
i=1

Yi ≈
1

n

n∑
i=1

π(X i ) for large n

• In words, global balance for π(·) ensures that

aggregate loss ≈ total pure premium income, for large n.
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Method of marginal totals (MMT)

• Early 1960s in North America, still reflects actuarial thinking.

• With xi ,j ∈ {0, 1} for all j , the pure premium is written as

π(x i ) = eiγ0

p∏
j=1

γ
xi,j
j

where

ei = risk exposure for policy i

γ0 = base premium π(0) per unit of exposure

γj = relativity associated with risk factor j .

• Considering x i1 = x i2 except for xi1,j = 1, xi2,j = 0,

γj =
π(x i1)

π(x i2)
.
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Method of marginal totals (MMT)

• MMT imposes

- global balance
n∑

i=1

yi =
n∑

i=1

π(x i )

- and local balance over all contracts with xi ,j = 1

∑
i |xi,j=1

yi =
∑

i |xi,j=1

π(x i ) for j = 1, 2, . . . , p.

• Referring to contingency tables, this type of local balance is
called marginal balance.

• Base premium γ0 and relativities γj solve the system of
balance equations.
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From MMT to GLMs

• Assume that given X , the response Y obeys a distribution
from the ED family: Binomial, Poisson, Gamma, Tweedie,
etc.

• The pure premium rate for policy i is of the form

g−1

β0 +

p∑
j=1

βjxi ,j


where g is the link function.

• With canonical link function

Minimizing deviance⇔ Solving MMT equations.

⇒ GLM estimation with canonical link is equivalent to the
actuarial MMT which predates GLMs.

⇒ MMT can be implemented with any tool developed for GLMs.
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From MMT to GLMs
• If xi ,j ∈ {0, 1} for all j and g = log then

π(x i ) = exp

ln ei + β0 +

p∑
j=1

βjxi ,j

 = ei exp(β0)
∏

j |xi,j=1

exp(βj)

where

exp(β0) = base premium per unit of exposure for the reference

class, for which xi ,1 = xi ,2 = . . . = xi ,p = 0

= γ0

exp(βj) = relativity of risk factor j , i.e. effect of switching

from xi ,j = 0 to xi ,j = 1

= γj .

• We then recover the multiplicative structure of the
premium.
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Modern learning tools

• Linear score β0 +
∑p

j=1 βjxi ,j in GLMs replaced with much
more flexible ones.

• Premiums still determined by minimizing deviance.

• However, deviance now

- penalizes departures of π(x i ) from yi

- maximizes correlation between π(x i ) and yi

measured on different scales.

• Documented in Denuit, Sznajder and Trufin (2019), Denuit,
Charpentier and Trufin (2021).

• Balance is no more imposed and optimizing deviance may
favor correlation.

• Lack of balance is not problematic in many applications (like
credit scoring or fraud detection) but well in pure premium
calculation.
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Local balance by autocalibration

• Autocalibration by Krüger and Ziegel (2021) imposes

E
[
Y
∣∣π(X ) = s

]
= s for all s.

I Balance thus operates within each group of contracts charged
the same premium, preventing any transfer.

• Example: two values for π(X ): π1 and π2. Then, π(X )
autocalibrated means that

1

n1

∑
i :π(X i )=π1

Yi = π1 and
1

n2

∑
i :π(X i )=π2

Yi = π2.

where nj =
∑n

i=1 I[π(X i ) = πj ], j = 1, 2.
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Part 2 - Testing for local balances using the

concept of auto-calibration
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Lorenz and concentration curves

• The Lorenz curve associated to the predictor π̂ is defined by

LC[π̂(X );α] =
E
[
π̂(X )I[π̂(X ) ≤ F−1π̂ (α)]

]
E[π̂(X )]

, α ∈ (0, 1).

• The concentration curve of the response Y with respect to
the predictor π̂ is defined as

CC[Y , π̂(X );α] =
E
[
Y I[π̂(X ) ≤ F−1π̂ (α)]

]
E[Y ]

, α ∈ (0, 1).
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Lorenz and concentration curves
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A new characterization of auto-calibration

• Proposition: (Denuit et al., 2024) We have

CC[µ(X ), π̂(X );α] = LC[π̂(X );α] for all α ∈ (0, 1)

if, and only if π̂unbiased(X ) = E[Y ]
E[π̂(X )] π̂(X ) is auto-calibrated.
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Statistical test for auto-calibration

• Denuit et al. (2024) introduced a statistical test for
auto-calibration.

• The authors test the null hypothesis

H0 : CC[µ(X ), π̂(X );α] = LC[π̂(X );α] for all α ∈ (0, 1)

against the alternative

H1 : CC[µ(X ), π̂(X );α] 6= LC[π̂(X );α] for some α ∈ (0, 1).
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Statistical test

I Testing procedure: based on the difference between sample
versions

ĈC[µ(X ), π̂(X );α] =
1

nȲ

n∑
i=1

Yi I
[
π̂(X i ) ≤ F−1

π̂ (α)
]
, α ∈ (0, 1),

and

L̂C[π̂(X );α] =
1

nπ̄

n∑
i=1

π̂(X i ) I
[
π̂(X i ) ≤ F−1

π̂ (α)
]
, α ∈ (0, 1).
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Statistical test

I The null hypothesis is rejected for large values of the test
statistic

T = supα∈(0,1)|Tn(α)|,

where

Tn(α) =
√
n
(
ĈC[µ(X ), π̂(X );α]− L̂C[π̂(X );α]

)
= n−1/2

n∑
i=1

(
Yi

Ȳ
− π̂(X i )

π̄

)
I[π̂(X i ) ≤ F−1

π̂ (α)], α ∈ (0, 1).
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Statistical test

I Proposition: Assume that (Yi , π̂(X i )), i = 1, 2, . . . , n, are
such that E[Yi ] 6= 0, E[π̂(X i )] 6= 0, E[π̂2(X i )] <∞ and
E[Y 2

i ] <∞. Then, under the null hypothesis, Tn(α)
converges weakly to a Gaussian process.
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Statistical test

I The proposed test rejects the null hypothesis when

T = supα∈(0,1)|Tn(α)| > cβ,

for some critical value cβ such that
P[supα∈(0,1)|Tn(α)| > cβ] = β.

I However, the analyst cannot compute the critical value cβ
since the underlying distribution of (Yi , π̂(X i )) is unknown.
Given the asymptotic Gaussian behavior of the process, the
non-parametric Monte-Carlo methods of Zhu et al. (2016)
can be used.
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Case study - Data set

I Swiss motor insurance database with 500 000 insurance
policies used in Wüthrich and Buser (2016) and in Wüthrich
(2020).

I For each policy i :
I Numbers of claims Yi ;
I Exposure-to-risk ei ≤ 1 (i.e. the duration of observation

expressed in years)
I Features Xi = (Xi1, . . . ,Xi8) :

- Xi1 = the age of the driver (age);
- Xi2 = the age of the car (ac);
- Xi3 = the power of the car (power);
- Xi4 = the fuel type of the car (fuel);
- Xi5 = the vehicle brand (vehicle brand);
- Xi6 = the area code of the living place of the driver (area);
- Xi7 = the population density at the living place of the driver

(dens);
- Xi8 = the Swiss canton of the license plate of the car (ct).
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Case study - Data set

I Important: The values eiµ(X i ) of the true model are also
provided (the Yi have been generated from expected true
model frequencies eiµ(X i )).

I We partition the data set into a training set D (80%) and a
validation set D (20%).
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Case study - Data set
I Estimates of the CC (in red) and LC (in blue) on D for the

true model:

I Applying our testing procedure to the true model on D, we
get p̂equal = 0.29, meaning that the null hypothesis is not
rejected at the level 5%.
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Case study - Models under consideration

I Given X = x and the exposure-to-risk e, Y is assumed to be
Poisson with mean eµ(x).

I D is divided into D1 and D2, where D1 includes 80% of the
observations of D and D2 gathers the remaining 20%.

I We first fit two GAMs on D1 using the R package mgcv:
I π̂GAM1(x), with only the feature X1 (age);
I π̂GAM2(x), using all 8 available features.

The covariates age, ac, power and dens are captured by
splines and we do not consider interaction terms.
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Case study - Models under consideration

I We fit four GBTs on D1 producing the following estimators:
I π̂GBT1(x), with only the feature X1 (age);
I π̂GBT2(x), using all 8 available features and ID = 1;
I π̂GBT3(x), using all 8 available features and ID = 2;
I π̂GBT4(x), using all 8 available features and ID = 3.

The optimal values for the number of trees T are
determined by minimizing the out-of-sample Poisson deviance
loss computed on D2:
I T = 507 for π̂GBT1;
I T = 2977 for π̂GBT2;
I T = 2984 for π̂GBT3;
I T = 2943 for π̂GBT4.
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Case study - Testing for equality of Concentration and
Lorenz curves

I Estimates of the CC (in red) and LC (in blue) on D:
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Case study - Testing for equality of Concentration and
Lorenz curves

I Values of p̂equal:

π̂ p̂equal
π̂GAM1 0.000
π̂GAM2 0.744
π̂GBT1 0.000
π̂GBT2 0.000
π̂GBT3 0.000
π̂GBT4 0.000
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Part 3 - Balance correction as a means for

auto-calibration
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Balance correction as a way to restore financial equilibrium

• Start from any predictor π(X ) strongly correlated with the
response Y .

⇒ The ranks produced by π(·) are informative to order
contracts from the cheapest to the most expensive one.

• An accurate premium can then be obtained by averaging
claim amounts over neighborhoods induced by π(·).

• The balance-corrected premium πbc(X ) obtained from
π(X ) by

πbc(X ) = E
[
Y
∣∣π(X )

]
satisfies autocalibration.

• In practice, balance correction can be implemented by

- local regression (Denuit, Charpentier and Trufin, 2021,
Ciatto et al. 2023);

- isotonic regression (Wüthrich and Ziegel, 2023).
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Balance correction: Example (Ciatto et al. (2023)
• freMTPL2freq data set (in the CASdatasets package in R).
• 678 013 observations of the number of claims (response Y ) in

a French MTPL portfolio, with 9 features X = (X1, . . . ,X9).
• π̂: boosted Poisson model (training set = 60% of the data).
• π̂bc: obtained by local regressions (on 20% of the data=

validation set).
• Lift chart (on the test set = 20% of the data) :

Figure:
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Impact of balance correction on Bregman divergence

• For a convex function `(·), define the error measure for the
mean as

L(y ,m) = `(y)− `(m)− `′(m)(y −m).

Functions L(·, ·) are called Bregman loss functions.

• Bregman loss functions are important in insurance
ratemaking since any Bregman loss function is a strictly
consistent loss function for the mean functional.

• Then,

E
[
L
(
Y , π̂bc(X )

)]
≤ E

[
L
(
Y , π̂(X )

)]
.
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Impact of balance correction on concentration curves

• Proposition: (Denuit and Trufin, 2024)
We have

CC[Y , π̂bc(X );α] ≤ CC[Y , π̂(X );α]

for any probability level α.
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Impact of balance correction on Lorenz curves

• Proposition: (Denuit and Trufin, 2024)
Let t → m(t) = E[Y |π̂(X ) = t]. Assume that m(·) is
continuous and strictly increasing. Then,

t 7→ m(t)

t
non-decreasing⇒ LC[π̂bc(X );α] ≤ LC[π̂(X );α]

while

t 7→ m(t)

t
non-increasing⇒ LC[π̂bc(X );α] ≥ LC[π̂(X );α].
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Part 4 - Performance criteria for

auto-calibrated predictors
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Context

I There are many tools for model selection in machine
learning : deviance criteria, Gini index, concentration and
Lorenz curves, correlation coefficients, . . .

I Interesting facts:
I Deviance is a consistent scoring rule for the mean;
I Not the case in general for the other measures listed

before.

⇒ Working with these tools for model selection may thus
lead to a wrong model choice.

I Restricting the Gini index to the class of autocalibrated
regression models makes it a consistent scoring rule
(Wüthrich, 2023).
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Pearson’s linear correlation

I Correlation coefficients are often used to assess the strength
of dependence within the pair (Y , π̂(X )).

I The most elementary correlation coefficient is Pearson’s linear
one:

r(Y , π̂(X )) =
Cov[Y , π̂(X )]√
Var[Y ]Var[π̂(X )]

.

I Proposition 4.1: (Denuit and Trufin, 2023)
Let π̂(X ) be an autocalibrated predictor. Then, r(Y , π̂(X )) is
maximum if, and only if, π̂(X ) = µ(X ).
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Gini index and ICC

I The integral of the concentration curve (ICC) over the
whole interval [0, 1] is then given by

ICC[Y , π̂(X )] =

∫ 1

0
CC[Y , π̂(X );α]dα

=
E
[
Y
∫ 1
0 I[π̂(X ) ≤ F−1π̂ (α)]dα

]
E[Y ]

.

I The Gini index can be defined as

Gini[Y , π̂(X )] =
1
2 − ICC[Y , π̂(X )]

1
2 −

∫ 1
0 CC[Y ,Y ;α]dα

.
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Gini index and ICC

I The Gini index is not in general a consistent scoring rule
for the mean, so neither is the ICC (Wüthrich, 2023).

I BUT the Gini index gives a consistent scoring rule within
the class of autocalibrated regression functions
(Wüthrich, 2023).

38 / 43



Concentration curve

I Proposition 4.3: (Denuit and Trufin, 2023)
For any autocalibrated predictor π̂(X ), we have

CC[Y , π̂(X );α] ≥ CC[Y , µ(X );α] for any α ∈ (0, 1),

with an identity if, and only if, π̂(X ) = µ(X ).
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Lorenz curve

I Since the LC coincides with the CC for autocalibrated
predictors, Proposition 4.3 shows that the true model also
has the smallest Lorenz curve.

I This legitimates model assessment based on Lorenz curve
under autocalibration, as it is often performed in practice!
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